

Impacts of the Mount Polley Mine Spill on Quesnel Lake: An Update from UNBC's Quesnel River Research Centre

Ellen Petticrew, Phil Owens and EDF project team

Cariboo Regional District (May 28, 2021)

Location

UNBC UNIVERSITY OF NORTHERN BRITISH COLUMBIA

The Quesnel River Research Centre

Used to be a DFO fish hatchery

Now a UNBC research station funded through a Forest Renewal BC (FRBC) endowment in Landscape Ecology focusing on aquatic processes and systems in watersheds

Quesnel Lake – The nursery

What happened?

NASA image of Mt Polley Mine site and retention pond: pre-spill July 29, 2014

NASA image of Mt Polley Mine site and retention pond: post-spill August 5, 2014

Note Hazeltine Creek channel widening and debris in Quesnel Lake

Hazeltine Creek: terrestrial impacts

October 2008

October 2014

What came into the lake?

The West Basin deposit

Scientific response – Areas of focus

- Tracking the plume
- Characterizing the sediment
- Monitoring food web

Contributors to early research efforts

Post-breach water column conditions

West Basin, lakeward of Hazeltine Creek

(Petticrew et al., 2015 Geophysical Research Letters)

Plume progression

NORTHERN BRITISH COLUMBIA

Plume spreading eastward at

~1cm/s.

(Petticrew et al., 2015 Geophysical Research Letters)

Quesnel River Response to Loadings from the Mine Spill

Concentrations of copper on river sediment

Source: Owens et al. (in preparation)

Many graduate students and research assistants

Environmental Damages Fund Supported Research : 2016

Collecting surface (top 50 cm) cores of the tailings material and lake sediment – especially the sediment – water interface

Slo-corer sites, July 2016

UN

HERN BRITISH COLUMBIA

Core retrieval impact zone

The "halo" zone vs Undisturbed sites

Downcore metal profiles in lake bottom materials

Source: Hatam et al. (2019, Scientific Reports)

NORTHERN BRITISH COLUMBIA

Differentiating zones of lake bottom sediment

Source: Hatam et al. (2019, Scientific Reports)

NORTHERN BRITISH COLUMBIA

Differentiating microbial composition of sediment

Source: Hatam et al. (2019, Scientific Reports)

Physical limnology work by UBC and QRRC

INIVERSITY OF

NORTHERN BRITISH COLUMBIA

Physical limnology work by UBC and QRRC

Source: Hamilton et al. (2020). Water Resources Research

UN

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

Overturn/Springmelt elevation of Copper on river sediment continues

Source: Owens et al. (in preparation)

Findings

Plume of fine sediment remained in suspension for months and moved up-lake and down-lake into Quesnel River

Copper concentrations of material on the bottom of the lake, in places, are over 6 times the SQG and 10-20 times reference/background values

Evidence suggests the tailings bottom layer is mobile, supports a different microbial community and is resuspended into the water column

Copper concentrations in Quesnel River sediment match the magnitude and timing of resuspension (lake overturn) in Quesnel Lake's West Basin

Biota (biofilm, plankton and invertebrates) show higher levels of metals closer to where the breach entered the lake

Collaborations: UNBC-QRRC, UBC, U Lethbridge & DFO With support from ECCC & MoE and community of Likely

