SUCCES - RECREATIONS LEISURE - LIBRARY - AIRPORTS - MARDARS - MARD And the construction of th

103 MILE WATER SYSTEM 2024 ANNUAL REPORT

Operating Permit # 002915 CRD Utilities Department

building communities together

File: 5600-20-06-01

January 14, 2025

Christine Sweezey Environmental Health Officer Interior Health 540 Borland Street, 3rd Floor Williams Lake, BC V2G 2G8

Dear Christine Sweezey:

Re: Transmittal of the 2024 Annual Report for the 103 Mile Water System

We are pleased to submit the 2024 Annual Report for the 103 Mile Water System. This report is prepared to provide a comprehensive summary of the key developments, activities, and achievements of 2024, as well as to outline plans for the water system.

The report has been developed with consideration for public engagement and transparency, ensuring it meets the information needs of Interior Health, the Cariboo Regional District Board of Directors, and particularly the 103 Mile community, as represented by Electoral Area G Director Al Richmond.

We trust this report will serve as a valuable resource in understanding the progress and direction of the 103 Mile Water System.

Sincerely,

Kelly McDonald Manager of Utilities

KM/cm

building communities together

cariboord.ca

caribooregion/ CRDEmergencyOperations/

Contents

1.	Exe	ecutive Summary1
-	1.1.	Key Information:1
2.	Int	roduction1
3.	Ma	aintenance2
3	3.1.	Water Disinfection and Compliance2
3	3.2.	Leak Survey2
4.	Pro	pjects and Planned Activities2
4	4.1.	Asset Management2
4	4.2.	Supervisory Control and Data Acquisition (SCADA)3
4	4.3.	Fire Protection Review3
5.	En	vironmental Operator's Certification Program (EOCP)3
6.	So	urce to Tap Risks4
(5.1.	Cross-Connection Control4
(5.2.	System Integrity4
(5.3.	Manganese4
7.	Wa	ater Sampling4
8.	Wa	ater Quality4
9.	Ev	ents5
ę	9.1.	Water Demand5
10.		Emergency Planning6
	10.1	. Key Elements of the ERCP6
11.		Conclusion7
12.		References7
Ap	peno	dix A: Links9
Ap	peno	dix B: Sample Results11
Ap	peno	dix C: Emergency Plans

Tables and Figures

Table 1: Environmental Operator Certification Levels	3
Table 2: Monthly Average Litres Per Day Demand (est. Per Resident)	5

Figure 1: 103 Mile 2024 Monthly Demand in Cubic Metres	5
Figure 2: Monthly Average Per Person Water Demand (103 Mile)	6

1. Executive Summary

In 2024, the Cariboo Regional District (CRD) continued efforts to provide safe and reliable water service for the 103 Mile Water System through maintenance, quality assurance, and infrastructure planning. The reservoir was inspected using remotely operated vehicle (ROV) technology without service disruption, and routine flushing helped address occasional discolored water caused by manganese. A planned leak survey will further assess potential water loss and system integrity.

The system met all regulatory standards, with no bacterial contamination detected. Manganese levels were managed by operating both wells together, and sodium hypochlorite disinfection ensured ongoing protection. Infrastructure improvements included SCADA system upgrades to enhance monitoring and operational efficiency. A fire protection review is underway, pending leak survey results.

Despite staffing challenges, Operators maintained service levels while advancing their certifications. Water demand varied seasonally, averaging 429.6 litres per person daily, with peak use in July. To strengthen emergency preparedness, a new Emergency Response and Contingency Plan (ERCP) is being developed. The CRD remains focused on system improvements, operational efficiency, and staff development to ensure continued service reliability.

1.1. Key Information:

System key facts:

- 5 km of PVC pipe
- One reservoir
- 2 wells, single pumphouse
- 1 booster station
- 153 service connections
- Serves approximately 350 residents

2. Introduction

The 103 Mile Water System Annual Report provides an overview of the system's performance, maintenance activities, and future planning efforts undertaken by the CRD in 2024. This report highlights key initiatives to ensure the continued delivery of safe, high-quality water to residents, compliance with regulatory standards, and ongoing improvements to infrastructure and operations.

3. Maintenance

In 2024, the 103 Mile reservoir was inspected by Aquavision Services using a remotely operated vehicle (ROV). This innovative approach allowed the inspection to be carried out without interrupting water service, ensuring minimal inconvenience to residents.

Occasionally, residents report instances of discolored water. This brown water can occur when chlorine interacts with naturally occurring manganese in the water supply, forming particles. Stagnant water in pipes or household plumbing can intensify this issue.

To address and reduce discoloration, our Operators routinely flush the water system as part of their regular maintenance tasks, helping maintain water quality.

3.1. Water Disinfection and Compliance

The 103 Mile Water System uses sodium hypochlorite (a liquid form of chlorine) to maintain disinfectant levels throughout the distribution network. This ensures water safety by protecting against bacterial contamination and preventing buildup on the interior walls of pipes.

Maintaining a chlorine residual is not only an industry standard but also a requirement under our Operating Permit issued by Interior Health.

3.2. Leak Survey

Our team is actively investigating potential leaks in the 103 Mile Water System. Fluctuations in water demand throughout the year suggest there may be leakage in the system. To address this, the CRD plans to purchase advanced leak detection equipment as part of the 2025 budget. This equipment will help confirm or rule out the presence of leaks.

4. Projects and Planned Activities

4.1. Asset Management

Throughout 2024, asset management inventory and implementation have been ongoing across all Cariboo Regional District utilities, including the 103 Mile Water System. This initiative will support more efficient budgeting for system improvements and enhance preventive maintenance practices.

4.2. Supervisory Control and Data Acquisition (SCADA)

The 103 Mile Water System benefited from the CRD-wide upgrade to our computer monitoring system, which allows the Operators more control as well as improved remote information and alerts.

4.3. Fire Protection Review

The 103 Mile Water System was not originally designed to provide fire protection. As a result, a review is currently underway to explore potential improvements that could enhance fire response capabilities. Possible upgrades include increasing storage capacity, improving water flow by connecting dead-end sections of the main water lines, and upgrading the reservoir.

However, before moving forward with these improvements, the CRD must first complete a leak survey to ensure the system is operating efficiently and to identify any existing issues that may impact future upgrades.

5. Environmental Operator's Certification Program (EOCP)

The CRD has been active in 2024, with staff completing numerous training courses and achieving certification levels in the Environmental Operator's Certification Program (EOCP). The southern region water systems now have three certified Operators, including one who has achieved their Level 3 (EOCP) certification in water distribution *(table 2)*.

The Operators are responsible for operating the 103 Mile Water System, along with six other water systems and one wastewater system in the South Cariboo.

<u>Operator</u>	<u>Region</u>	<u>Water</u> <u>Distribution</u>	<u>Water</u> <u>Treatment</u>	<u>Operator in</u> <u>Training</u>
Jourdy Ouellette	<mark>South</mark>	3	1	
Larry Perry	<mark>South</mark>	1		
Colin Brusic	<mark>South</mark>			\checkmark
Ken/Chuck	Central		Backup	
Manager	Central	4	1	

Staffing was a challenge in 2024, with multiple vacant positions. Despite this, Operators have worked diligently to maintain the level of service our residents expect while safeguarding public health. We anticipate improvements in 2025 through additional staff and continued training.

6. Source to Tap Risks

6.1. Cross-Connection Control

Currently, there is no formal cross-connection control program in place. This issue should be addressed as policies are expanded to cover smaller systems in the future. At present, there are no commercial properties connected to the 103 Mile water system.

6.2. System Integrity

While all water quality samples in 2024 met safety standards with no bacterial contamination detected, potential leaks in the system remain a concern. Leaks can create pathways for contaminants to enter the water supply. To address this, the CRD has scheduled a comprehensive leak survey to identify and resolve any issues.

6.3. Manganese

The 103 Mile Water System is supplied by two wells, each with a different water quality profile. One of the wells contains manganese levels that exceed the maximum acceptable concentration (MAC) set by health regulators. To manage this, both wells are operated together to balance water quality, ensuring the well with higher manganese levels is never used on its own.

7. Water Sampling

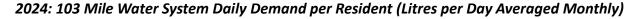
The 2024 sampling schedule consisted of a full chemical analysis as well as twice monthly bacteriological sampling at three locations^{*}. In addition, chlorine residuals and turbidity are monitored by the Operators in real time.

* Sample results attached.

8. Water Quality

Manganese levels in one of the two source wells slightly exceed the maximum acceptable concentration level of 0.12 mg/L established in the regulations. Because of this, both source wells are run simultaneously ensuring the concentration levels stay below the established limit. In 2024, all 74 samples tested for coliforms and E. coli were negative for bacterial contamination.

9. Events


No advisories occurred in 2024 for the 103 Mile Water System. Three service leaks were repaired without incident.

9.1. Water Demand

In 2024, water usage in the 103 Mile Water System varied throughout the year, with the highest demand recorded in July at 7,232 cubic metres and the lowest in December at 4,007 cubic metres.

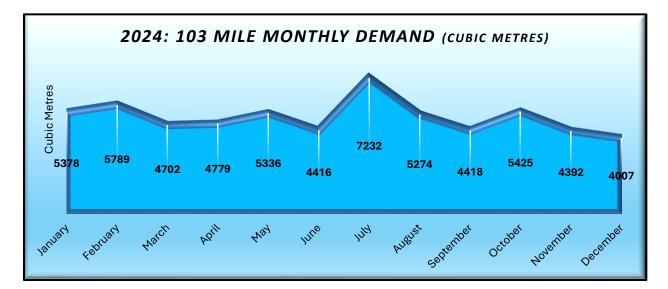

On average, each resident used an estimated 429.6 litres of water per day over the year. Water consumption fluctuated seasonally, with a difference of 267.8 litres per person per day between the peak usage in July and the lowest consumption in December.

Table 2: Monthly Average Litres Per Day Demand (est. Per Resident)

January	February	March	April	May	June	July	August	September	October	November	December
445	530	389	408	441	377	598	436	365	449	375	331

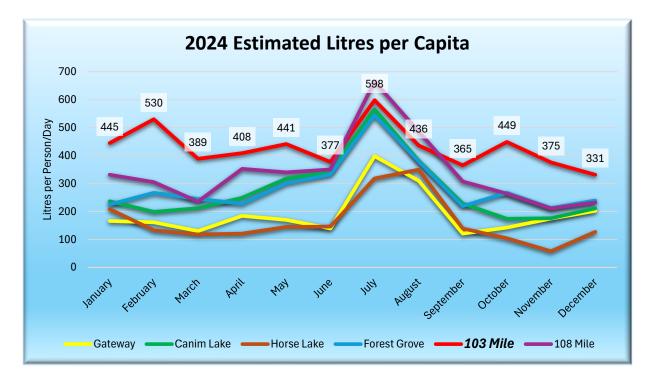


Figure 2: Monthly Average Per Person Water Demand (103 Mile)

10. Emergency Planning

A new Emergency Response and Contingency Plan (ERCP) for the 103 Mile Water System is currently being developed to enhance preparedness and ensure quick, coordinated responses to potential emergencies affecting the water supply.

The process began with a risk assessment to identify potential hazards, such as equipment failures, natural disasters, contamination events, and power outages. Stakeholder input, including feedback from Operators, community members, and regulatory bodies, helped shape the plan to address specific vulnerabilities and local conditions.

10.1. Key Elements of the ERCP

The key elements of the ERCP include:

- Clear Response Protocols: Step-by-step actions for various emergency scenarios.
- Roles and Responsibilities: Defined roles for Operators, management, and external agencies.
- Communication Strategies: Procedures for notifying residents, government agencies, and media.

- Resource Allocation: Identification of equipment, backup systems, and personnel required during emergencies.
- Training and Drills: Regular exercises to ensure staff are familiar with the plan and can respond efficiently.

The plan will be reviewed and approved by local health authorities to ensure compliance with provincial regulations. Updating the ERCP ensures that emergency procedures align with the current operational capacity.

In addition, a drought management plan is also currently being developed in line with best practice.

* Plans attached.

11. Conclusion

The CRD remains dedicated to maintaining and improving the 103 Mile Water System to ensure safe, reliable service for the community. Ongoing investments in infrastructure, proactive maintenance, and staff development will support long-term sustainability and regulatory compliance. Moving forward, the CRD will continue to prioritize system efficiency, water quality, and emergency preparedness to meet the evolving needs of residents.

12. <u>References</u>

- Health Canada (2019, May 21). Guidance on Natural Organic Matter in Drinking Water.
 Retrieved from <u>https://www.canada.ca/en/health-canada/programs/consultation-organic-matter-drinking-water/document.html#es</u>
- Environmental Operators Certification Program (2024). Retrieved from <u>https://eocp.ca/</u>
- Sample results, Interior Health. Retrieved from <u>https://services.interiorhealth.ca/publichealthprotection/watersamples.aspx</u>
- Statistics Canada (2021). Survey of Drinking Water Plants The Daily. https://www150.statcan.gc.ca/n1/daily-quotidien/231114/dq231114d-eng.htm

Thank you to:

- Cheryl McMullen
- Jourdy Ouellette
- Colin Brusic
- Ken Heidema

for their contribution.

- Chuck Howes
- Phil Wilkins
- Tyler Olsen

Appendix A: Links

Interior Health:

- Interior Health Water Advisories
- Drinking Water | Environmental & Seasonal Health | IH

Cariboo Regional District:

- Water Notices and Advisories Cariboo Regional District
- <u>Sewer and Water Services Cariboo Regional District</u>

Notification App (VoyentAlert!):

• <u>Emergency Notification System - Cariboo Regional District</u>

Environmental Operators Certification Program (EOCP):

- <u>EOCP Homepage | EOCP</u>
- <u>Backflow Prevention, Cross Connection Control, and the Environmental Operators</u> Certification Program | EOCP

Appendix B: Sample Results

l

Facility and Sample Site:	Test Type:				
103 Mile Water System 5389 Park Dr., 100 Mile House, BC	Drinking Water – Bacteriological Unit of Measure: CFU per 100 ml	Value	Date Collected	Results Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	01 Jan 2024		
rumphouse	Sample Parameter: Total Coliform	<1	01 Jan 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	29 Jan 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	29 Jan 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	29 Jan 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	29 Jan 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	07 Feb 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	07 Feb 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	07 Feb 2024	Acceptable	
l'amphouse	Sample Parameter: Total Coliform	<1	07 Feb 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	07 Feb 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	07 Feb 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	28 Feb 2024	Acceptable	
Sumple Station	Sample Parameter: Total Coliform	<1	28 Feb 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	28 Feb 2024	Acceptable	
amphouse	Sample Parameter: Total Coliform	<1	28 Feb 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	28 Feb 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	28 Feb 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	13 Mar 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	13 Mar 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	13 Mar 2024	Acceptable	
l'unpriouse	Sample Parameter: Total Coliform	<1	13 Mar 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	13 Mar 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	13 Mar 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	26 Mar 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	26 Mar 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	26 Mar 2024	Acceptable	
l'ampriouse	Sample Parameter: Total Coliform	<1	26 Mar 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	26 Mar 2024	Acceptable	
BOOSTER Station	Sample Parameter: Total Coliform	<1	26 Mar 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	10 Apr 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	10 Apr 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	10 Apr 2024	Acceptable	
Pumphouse	Sample Parameter: Total Coliform	<1	10 Apr 2024 10 Apr 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	10 Apr 2024	Acceptable	
BOOSTER STATION	Sample Parameter: Total Coliform	<1	10 Apr 2024 10 Apr 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	24 Apr 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	24 Apr 2024 24 Apr 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	24 Apr 2024 24 Apr 2024	Acceptable	
rumphouse	Sample Parameter: Total Coliform	<1	24 Apr 2024 24 Apr 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	24 Apr 2024 24 Apr 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	24 Apr 2024 24 Apr 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	07 May 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	07 May 2024 07 May 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	07 May 2024	Acceptable	
Pumphouse	Sample Parameter: Total Coliform	<1	07 May 2024 07 May 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	07 May 2024	Acceptable	
BOOSTER STATION	Sample Parameter: Total Coliform	<1	'	Acceptable	
Sample Station			07 May 2024	Acceptable	
sample station	Sample Parameter: E. coli	<1	28 May 2024		
Pumphouse	Sample Parameter: Total Coliform Sample Parameter: E. coli	<1 <1	28 May 2024	Acceptable	
amphouse		<1 <1	28 May 2024	Acceptable	
Poostor Station	Sample Parameter: Total Coliform		28 May 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	28 May 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	28 May 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	05 Jun 2024	Acceptable	
2	Sample Parameter: Total Coliform	<1	05 Jun 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	05 Jun 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	05 Jun 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	05 Jun 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	05 Jun 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	19 Jun 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	19 Jun 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	19 Jun 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	19 Jun 2024	Acceptable	

l

Facility and Sample Site:	Test Type:				
103 Mile Water System 5389 Park Dr., 100 Mile House, BC	Drinking Water – Bacteriological Unit of Measure: CFU per 100 ml	Value	Date Collected	Results	
Booster Station	Sample Parameter: E. coli	<1	19 Jun 2024	Acceptable	
BOOSTER STATION	Sample Parameter: Total Coliform	<1	19 Jun 2024 19 Jun 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	03 Jul 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	03 Jul 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	03 Jul 2024	Acceptable	
l'amphouse	Sample Parameter: Total Coliform	<1	03 Jul 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	03 Jul 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	03 Jul 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	16 Jul 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	16 Jul 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	16 Jul 2024	Acceptable	
l'ampriouse	Sample Parameter: Total Coliform	<1	16 Jul 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	16 Jul 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	16 Jul 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	06 Aug 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	06 Aug 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	06 Aug 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	06 Aug 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	06 Aug 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	06 Aug 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	13 Aug 2024	Acceptable	
l'unpriouse	Sample Parameter: Total Coliform	<1	13 Aug 2024	Acceptable	
5548 Sample Station	Sample Parameter: E. coli	<1	13 Aug 2024	Acceptable	
5546 Sample Station	Sample Parameter: Total Coliform	<1	13 Aug 2024	Acceptable	
Saunders Sample Station	Sample Parameter: E. coli	<1	13 Aug 2024	Acceptable	
Sumple Station	Sample Parameter: Total Coliform	<1	13 Aug 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	10 Sep 2024	Acceptable	
l'ampriouse	Sample Parameter: Total Coliform	<1	10 Sep 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	10 Sep 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	10 Sep 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	10 Sep 2024	Acceptable	
booster station	Sample Parameter: Total Coliform	<1	10 Sep 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	23 Sep 2024	Acceptable	
Pumphouse	Sample Parameter: Total Coliform	<1	23 Sep 2024 23 Sep 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	23 Sep 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	23 Sep 2024 23 Sep 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	23 Sep 2024	Acceptable	
BOOSTER Station	Sample Parameter: Total Coliform	<1	23 Sep 2024 23 Sep 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	07 Oct 2024	Acceptable	
rumphouse	Sample Parameter: Total Coliform	<1	07 Oct 2024 07 Oct 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	07 Oct 2024	Acceptable	
Sample Station	Sample Parameter: Total Coliform	<1	07 Oct 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	07 Oct 2024	Acceptable	
BOOSTER Station	Sample Parameter: Total Coliform	<1	07 Oct 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	22 Oct 2024	Acceptable	
rumphouse	Sample Parameter: Total Coliform	<1	22 Oct 2024 22 Oct 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	22 Oct 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	22 Oct 2024 22 Oct 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	22 Oct 2024 22 Oct 2024	Acceptable	
	Sample Parameter: E. coll Sample Parameter: Total Coliform	<1	22 Oct 2024 22 Oct 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	13 Nov 2024	Acceptable	
amphouse	Sample Parameter: Total Coliform	<1	13 Nov 2024 13 Nov 2024	Acceptable	
Sample Station	Sample Parameter: Total Collorm Sample Parameter: E. coli	<1	13 Nov 2024 13 Nov 2024	Acceptable	
Sample Station	Sample Parameter: E. coll Sample Parameter: Total Coliform	<1 <1	13 Nov 2024 13 Nov 2024	Acceptable	
Poostor Station	Sample Parameter: Total Conform Sample Parameter: E. coli	<1			
Booster Station			13 Nov 2024	Acceptable	
Dumphouse	Sample Parameter: Total Coliform	<1	13 Nov 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	26 Nov 2024	Acceptable	
Comula Station	Sample Parameter: Total Coliform	<1	26 Nov 2024	Acceptable	
Sample Station	Sample Parameter: E. coli	<1	26 Nov 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	26 Nov 2024	Acceptable	
Booster Station	Sample Parameter: E. coli	<1	26 Nov 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	26 Nov 2024	Acceptable	
Pumphouse	Sample Parameter: E. coli	<1	03 Dec 2024	Acceptable	
	Sample Parameter: Total Coliform	<1	03 Dec 2024	Acceptable	

Facility and Sample Site:	Test Type:			
103 Mile Water System	Drinking Water – Bacteriological			
5389 Park Dr., 100 Mile House, BC	Unit of Measure: CFU per 100 ml	Value	Date Collected	Results
Booster Station	Sample Parameter: E. coli	<1	03 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	03 Dec 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	03 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	03 Dec 2024	Acceptable
103 Sample Station	Sample Parameter: E. coli	<1	17 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	17 Dec 2024	Acceptable
103 Sample Station	Sample Parameter: E. coli	<1	17 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	17 Dec 2024	Acceptable
Booster Station	Sample Parameter: E. coli	<1	17 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	17 Dec 2024	Acceptable

Page	:	4 of 7
Work Order	:	KS2400951
Client	:	Cariboo Regional District
Project	:	Drinking Water

Analytical Results Evaluation

Matrix: Water		Client	sample ID	108 Treated	103 Mile Well #3	103 Mile Well #4	Forest Grove Pumphouse	Gateway Pumphouse	Canim Lake Pumphouse	Horse Lake Pumphouse
		Sampling	date/time	19-Mar-2024 08:00	19-Mar-2024 09:00	19-Mar-2024 09:00	19-Mar-2024 10:05	19-Mar-2024 10:25	19-Mar-2024 10:50	19-Mar-2024 11:35
		3	Sub-Matrix	Water	Water	Water	Water	Water	Water	Water
Analyte	CAS Number	Method/Lab	Unit	KS2400951-001	KS2400951-002	KS2400951-003	KS2400951-004	KS2400951-005	KS2400951-006	KS2400951-007
Physical Tests										
Alkalinity, total (as CaCO3)		E290/VA	mg/L	554	676	635	360	460	485	406
Colour, true		E329/VA	CU	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Conductivity		E100/VA	µS/cm	1330	1520	1300	658	928	932	882
рН		E108/VA	pH units	8.21	8.26	8.34	8.09	8.31	8.27	8.19
Solids, total dissolved [TDS]		E162/VA	mg/L	944	825	742	395	514	555	527
Turbidity		E121/VA	NTU	<0.10	1.70	0.34	<0.10	3.35	<0.10	0.58
Hardness (as CaCO3), from total Ca/Mg		EC100A/VA	mg/L	568	628	524	343	464	422	322
Anions and Nutrients										
Chloride	16887-00-6	E235.CI/VA	mg/L	97.7	138	82.0	13.2	42.1	17.0	57.9
Fluoride	16984-48-8	E235.F/VA	mg/L	0.503	0.145	0.144	0.160	0.248	0.332	0.160
Nitrate (as N)	14797-55-8	E235.NO3-L/VA	mg/L	0.769	<0.0250 DLDS	<0.0250 CLDS	1.10	<0.0250 DLDS	0.296	0.409
Nitrite (as N)	14797-65-0	E235.NO2-L/VA	mg/L	<0.0050 DLDS	<0.0050 DLDS	<0.0050 CLDS	<0.0050 DLDS	<0.0050 DLDS	0.0101	0.0061
Sulfate (as SO4)	14808-79-8	E235.SO4/VA	mg/L	81.5	27.8	34.2	4.73	36.3	51.2	7.82
Total Metals										
Aluminum, total	7429-90-5	E420/VA	mg/L	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Antimony, total	7440-36-0	E420/VA	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Arsenic, total	7440-38-2	E420/VA	mg/L	0.00122	0.00554	0.00867	0.00061	0.00324	0.00091	0.00218
Barium, total	7440-39-3	E420/VA	mg/L	<0.0200	0.0541	0.0319	0.0208	0.0301	0.0340	<0.0200
Boron, total	7440-42-8	E420/VA	mg/L	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
Cadmium, total	7440-43-9	E420/VA	mg/L	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200
Calcium, total	7440-70-2	E420/VA	mg/L	68.8	50.5	38.4	64.5	46.2	53.3	62.6
Chromium, total	7440-47-3	E420/VA	mg/L	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
Copper, total	7440-50-8	E420/VA	mg/L	1.40	0.00796	0.00345	0.0333	0.00995	0.00900	0.00255
Iron, total	7439-89-6	E420/VA	mg/L	<0.030	0.286	0.184	<0.030	0.777	<0.030	0.219
Lead, total	7439-92-1	E420/VA	mg/L	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500	<0.000500
Magnesium, total	7439-95-4	E420/VA	mg/L	96.1	122	104	44.2	84.6	70.1	40.2
Manganese, total	7439-96-5	E420/VA	mg/L	<0.00200	0.122	0.0561	<0.00200	0.173	0.00448	0.234

alsglobal.com

:	5 of 7
1	KS2400951
:	Cariboo Regional District
:	Drinking Water
	1

Analytical Results Evaluation

Matrix: Water		Client sample ID			103 Mile Well #3	103 Mile Well #4	Forest Grove Pumphouse	Gateway Pumphouse	Canim Lake Pumphouse	Horse Lake Pumphouse
		Sampling	date/time	19-Mar-2024 08:00	19-Mar-2024 09:00	19-Mar-2024 09:00	19-Mar-2024 10:05	19-Mar-2024 10:25	19-Mar-2024 10:50	19-Mar-2024 11:35
		S	Sub-Matrix	Water	Water	Water	Water	Water	Water	Water
Analyte	CAS Number	Method/Lab	Unit	KS2400951-001	KS2400951-002	KS2400951-003	KS2400951-004	KS2400951-005	KS2400951-006	KS2400951-007
Total Metals										
Mercury, total	7439-97-6	E508/VA	mg/L	0.0000064	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
Potassium, total	7440-09-7	E420/VA	mg/L	8.57	9.50	9.57	3.01	6.01	13.5	2.78
Selenium, total	7782-49-2	E420/VA	mg/L	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Sodium, total	7440-23-5	E420/VA	mg/L	99.3	114	120	15.0	42.2	62.0	88.2
Uranium, total	7440-61-1	E420/VA	mg/L	0.00557	0.00486	0.00433	0.00337	0.0104	0.0144	0.00250
Zinc, total	7440-66-6	E420/VA	mg/L	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
Volatile Organic Compounds [THMs]										
Bromodichloromethane	75-27-4	E611B/VA	µg/L	9.6		<1.0		<1.0	<1.0	5.8
Bromoform	75-25-2	E611B/VA	µg/L	1.6		<1.0		<1.0	<1.0	<1.0
Chloroform	67-66-3	E611B/VA	µg/L	10.6		1.5		<1.0	<1.0	17.8
Dibromochloromethane	124-48-1	E611B/VA	µg/L	8.0		<1.0		<1.0	<1.0	2.5
Trihalomethanes [THMs], total		E611B/VA	µg/L	29.8		<2.0		<2.0	<2.0	26.1
Volatile Organic Compounds [THMs]	Surrogates									
Bromofluorobenzene, 4-	460-00-4	E611B/VA	%	98.2		97.0		95.7	92.2	95.2
Difluorobenzene, 1,4-	540-36-3	E611B/VA	%	101		102		101	102	100

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	6 of 7
Work Order	:	KS2400951
Client	:	Cariboo Regional District
Project	1	Drinking Water

Summary of Guideline Limits

Analyte	CAS Number	Unit	BCDWQG AO	BCDWQG MAC	BCDWQG OG		
Physical Tests							
Alkalinity, total (as CaCO3)		mg/L					1
Colour, true		CU	15 CU				
Conductivity		μS/cm	-				
Hardness (as CaCO3), from total Ca/Mg		mg/L					
pH		pH units			7 - 10.5 pH		
a					units		
Solids, total dissolved [TDS]		mg/L	500 mg/L				
Turbidity		NTU		1 NTU			
Anions and Nutrients							
Chloride	16887-00-6	mg/L	250 mg/L				
Fluoride	16984-48-8	mg/L		1.5 mg/L			
Nitrate (as N)	14797-55-8	mg/L		10 mg/L			
Nitrite (as N)	14797-65-0	mg/L	-	1 mg/L			
Sulfate (as SO4)	14808-79-8	mg/L	500 mg/L	-			
Fotal Metals							
Aluminum, total	7429-90-5	mg/L		2.9 mg/L			
Antimony, total	7440-36-0	mg/L		0.006 mg/L			
Arsenic, total	7440-38-2	mg/L	-	0.01 mg/L			
Barium, total	7440-39-3	mg/L		2 mg/L			
Boron, total	7440-42-8	mg/L	-	5 mg/L			
Cadmium, total	7440-43-9	mg/L		0.007 mg/L			
Calcium, total	7440-70-2	mg/L	-				
Chromium, total	7440-47-3	mg/L		0.05 mg/L			
Copper, total	7440-50-8	mg/L	1 mg/L	2 mg/L			
Iron, total	7439-89-6	mg/L	0.3 mg/L				
Lead, total	7439-92-1	mg/L	-	0.005 mg/L			
Magnesium, total	7439-95-4	mg/L					
Manganese, total	7439-96-5	mg/L	0.02 mg/L	0.12 mg/L			
Mercury, total	7439-97-6	mg/L		0.001 mg/L			
Potassium, total	7440-09-7	mg/L					
Selenium, total	7782-49-2	mg/L		0.05 mg/L			
Sodium, total	7440-23-5	mg/L	200 mg/L				
Uranium, total	7440-61-1	mg/L		0.02 mg/L			
Zinc, total	7440-66-6	mg/L	5 mg/L				
/olatile Organic Compounds [THMs]							
Bromodichloromethane	75-27-4	µg/L					
Bromoform	75-25-2	µg/L					

alsglobal.com

Analyte	CAS Number	Unit	BCDWQG AO	BCDWQG MAC	BCDWQG OG		
Volatile Organic Compounds [THMs] - Continued							
Chloroform	67-66-3	µg/L					
Dibromochloromethane	124-48-1	µg/L		-	-		
Trihalomethanes [THMs], total		µg/L		100 µg/L	-		
Bromofluorobenzene, 4-	460-00-4	%					
Difluorobenzene, 1,4-	540-36-3	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

British Columbia Drinking Water Quality Guidelines (JAN, 2023)
Aesthetic Objective/Other Value
Maximium Acceptable Concentrations
Operational Guidance

Appendix C: Emergency Plans

2025 Cariboo Regional District

Emergency Response & Contingency Plan

103 Mile Water System

Utilities, Communications, and Emergency Operations Departments 1-1-2025

By Kelly McDonald, Cheryl McMullen, Gerald Pinchbeck, and Jourdy Ouellette

Contents

SECTION 1: Er	nergency Plan Goals1
1.1. Resi	liency in Operations1
1.1.1.	Emergency Response Plan1
1.1.2.	Regional Agency Coordination1
1.1.3.	Mutual Aid Agreements 1
1.1.4.	Emergency Power 2
1.1.5.	Ability to Meet Water Demands 2
1.1.6.	Critical Parts Inventory 2
1.1.7.	Critical Staff Resiliency 2
SECTION 2: H	ow to Use This Plan2
SECTION 3: Er	nergency Planning Definitions2
SECTION 4: Er	nergency Scenarios
4.1. Intro	oduction3
4.2. Eme	rgency Scenario Format
4.2.1.	Description of Emergency
4.2.2.	Indicators
4.2.3.	Actions
4.2.4.	Contacts 3
4.2.5.	Event Record 3
SECTION 5: W	/ater Supply Contamination
5.1. Pote	ential Causes
5.1.1.	Chemical Spill
5.1.2.	Flood Event
5.1.3.	Confirmed Cross Connection
5.1.4.	System Breach
5.1.5.	Positive Sample Result 4
5.1.6.	Vandalism
SECTION 6: Su	upply Disruption

103 Mile Water System – 2025 Emergency Response and Contingency Plan

6.1.	Equipment Failure	5
6.2.	Supply Main Break	6
6.3.	Extended Loss of BC Hydro Power Supply	7
6.4.	Operator Transportation Routes Compromised	8
6.4.	1. Potential Causes	8
SECTION	7: Cyber Incident	9
7.1.	Introduction	9
7.2.	IT and/or IT Contractor Steps1	0
SECTION	8: Drought 1	1
8.1	Introduction1	1
Appendi	x A: Contacts 1	2
Caribo	oo Regional District Administrative Staff Emergency Contact Numbers	3
Caribo	oo Regional District Water Operators1	3
Provin	cial and Federal Contacts 1	3
Contra	actors1	4
Munic	ipalities1	4
Media	e (Communications Department Leads)1	4
Appendi	x B: Charts1	5
Water	Main Break 1	6
Critica	Il Parts Inventory1	6
Appendi	x C: Drought Management Plan1	8
Priorit	y Users1	9
Water	Restrictions and Conservation Measures1	9
Comm	nunication Plan 1	9
Supple	emental or Alternate Sources of Potable Water2	1
Opera	tional Procedures 2	2
Appendi	x D: Templates 2	3
Dama	ge Assessment Summary (EOC 415) 2	4
Action	ו Plan (EOC 502) 2	5

103 Mile Water System – 2025 Emergency Response and Contingency Plan

S	Situation Report (EOC 501)	26
E	Event Log (EOC 414)	27
Арр	pendix E: Communications Templates	28

SECTION 1: Emergency Plan Goals

The Objective of the Cariboo Regional District (CRD) Emergency Response and Contingency Plan (ERCP) is to provide staff and regulatory agencies with a guideline for potential water utility related emergencies.

This Emergency Response and Contingency Plan (ERCP) serves as a guideline to address various emergency situations, recognizing that no two emergencies are exactly alike. Each emergency is described with a general sequence of steps to follow, providing both a structured approach to response and a consistent method for documenting actions taken. Task lists within each emergency section also function as checklists to remind staff of critical items to consider and complete during an emergency. This ERCP includes specific protocols and considerations for the CRD water supply system.

This plan has been prepared to guide the Cariboo Regional District to respond to an emergency arising in the operation of the 103 Mile Water System. The purpose of the ERCP is to:

- ✓ Ensure staff and the public's safety in carrying out emergency tasks.
- ✓ Provide the earliest and safest response to an emergency condition.
- ✓ Ensure that water quality and public health are not compromised.
- ✓ Ensure that water for firefighting is available.
- ✓ Restore normal water system operation.
- ✓ Protect the natural environment from impacts associated with the system operation in the event of an emergency.
- ✓ Contain property damage.

1.1. Resiliency in Operations

Operational resiliency refers to the capability of an operation to adjust, adapt, and maintain service delivery under emergency conditions. The objective for the CRD Water Utility is to achieve high operational resiliency. Indicators of operational resiliency include the following:

- 1.1.1. **Emergency Response Plan**: A comprehensive ERP is essential in building resilience within operations, providing structured guidance for handling emergencies effectively. This document is an integral part of that resiliency framework.
- 1.1.2. **Regional Agency Coordination**: The ERCP must be shared with regional emergency response agencies, ensuring cohesive support. The CRD Emergency Operations Department serves as the local staging agency for the Provincial Emergency Program.
- 1.1.3. **Mutual Aid Agreements**: In certain emergencies, the CRD may need support from neighboring water utilities. 100 Mile is a nearby utility from which the CRD may seek

assistance in the future. The CRD is working toward a formal mutual aid agreement based on community protection principles.

- 1.1.4. **Emergency Power**: The 103 Mile Water System can operate on gravity-fed supply. A standard battery pack is on hand to maintain disinfection if the power grid fails.
- 1.1.5. **Ability to Meet Water Demands**: While the water system meets current demands, the reservoir is small, and there are no fire hydrants in the service area.
- 1.1.6. **Critical Parts Inventory:** Appendix B provides a list of critical parts and their availability. Appendix A includes contact names for Cariboo support agencies offering specialized parts or services.
- 1.1.7. **Critical Staff Resiliency:** Staff's ability to respond and remain calm during extreme events is only evident when tested. Training and reinforcement of sound decision-making at all levels will support preparedness for emergency situations.

SECTION 2: How to Use This Plan

The Water System Emergency Response and Contingency Plan (ERCP) is a guide for handling water system emergencies. The "Actions" section outlines various potential emergencies and provides steps to help minimize further damage.

After an emergency, the CRD will complete a Post Incident Report (see Appendix D). Regular review exercises and updates will strengthen our emergency response capabilities. We ask all plan holders to participate and offer recommendations to continually improve the ERCP.

Remember, the ERCP is only effective if everyone reviews, understands, and contributes to its ongoing development.

SECTION 3: Emergency Planning Definitions

This section provides emergency planning definitions used in this document, following AWWA Manual 19: Emergency Planning for Water Utilities.

Emergency: An unexpected event that may compromise water quality or reduce the availability of domestic, irrigation, or fire flow water for the community.

Minor Emergency: A localized, routine incident impacting a small number of customers, such as a small pipe break, vehicle collision with a hydrant, brief power outage, or minor service repair. Minor emergencies should be manageable without special resources and, if effectively handled, can be prevented from escalating into major emergencies.

Major Emergency: A significant event affecting a large portion of the water system, posing risks to water quality or quantity and potentially endangering community health and safety. Major emergencies are rare but impactful.

Natural Disaster: Events caused by natural forces beyond human control, including wildfires, earthquakes, floods, tornadoes, heat domes, freezing, and other severe weather-related incidents.

Human-Caused Disaster: Disasters resulting from human actions, whether accidental or intentional. These may include human error, accidents, labor disputes, negligence, vandalism, sabotage, terrorism, biological contamination, or chemical spills.

Hazard: A source of potential harm or danger linked to a disaster, such as unstable slopes from a creek wash-out or ground shaking from an earthquake.

Lifeline Supply: Essential community services that support health, safety, and sustenance. Lifeline utilities include water, wastewater, electricity, and natural gas, as well as critical transportation, communication, healthcare, and emergency operations centres.

SECTION 4: Emergency Scenarios

4.1. Introduction

Sections 5 and 6 list potential water system emergencies related to the physical components of the water supply. Section 7 describes the steps for a cyber threat or vandalism.

4.2. Emergency Scenario Format

Each emergency scenario in this ERCP follows a consistent format:

- 4.2.1. **Description of Emergency**: Describes each potential emergency for easy reference. Sections 5 and 6 cover physical water service issues, while Section 7 addresses cyber incidents and vandalism.
- 4.2.2. **Indicators**: Outlines how each emergency can be recognized, either by CRD staff or external contacts.
- 4.2.3. Actions: Lists response steps for CRD staff, generally in recommended order. This list serves as a guideline, and the lead Water Operator can use the provided checklist to verify all necessary actions are taken.
- 4.2.4. **Contacts**: Lists relevant contact agencies; specific contacts are found in the ERCP's Communications Section.
- 4.2.5. **Event Record**: A checklist at the page bottom summarizes the event, records whether photos were taken, and tracks emergency reporting.

All events, including minor repairs and leaks, should be documented and sent to the CRD Office for electronic filing. Each event should be recorded by date. Large events should have dedicated folders containing photos and data, following a standardized naming protocol.

SECTION 5: Water Supply Contamination

Description of Emergency: Contamination has been detected or possible contamination is present.

Indicators: Public notification (taste, odour or colour observations), poor water sample results, visible observations made by Water Operators, cross connection with potential contamination.

5.1. Potential Causes

- 5.1.1. Chemical Spill (e.g. transport truck, industry)
- 5.1.2. Flood Event
- 5.1.3. Confirmed Cross Connection
- 5.1.4. System Breach (e.g. water main break) *see 6.2.
- 5.1.5. Positive Sample Result (e.g. E. coli or other immediate threat to public health contaminant)
- 5.1.6. Vandalism

Actions:

- 1) Notify Water Operator.
- 2) Notify Drinking Water Officer (DWO).
- 3) Assess threat level (see Appendix B).
- 4) Notify Communications Department.
- 5) Water Operators to investigate site and inform Manager of Utilities of possible situation. Manager to contact Interior Health.
- 6) Confirm that the source of contaminant is mitigated.
- 7) If chemical contamination confirmed or highly suspected to be present:
 - a) Attempt to isolate.
 - b) Discuss with Engineer, Biologist/Chemist (Lab) and DWO to develop a reasonable and representative sampling program.
 - c) Contact Lab and arrange bottles if required and collect samples for rush analysis.

103 Mile Water System – 2025 Emergency Response and Contingency Plan

- 8) Report any spills to the Provincial Agency responsible (see Appendix A).
- 9) In an extreme situation of contamination, consider shutting down all supply pumps.
 - a) Pump station would shut off and "Do Not Use" notices would be provided to the public. CRD senior management would make this call.
- 10) Communication: Begin public notification if required and follow Water Quality Notification Procedures.
- 11) Continue discussion with appropriate experts for moving forward.
- 12) Discussions to consider alternate water source if needed. Involve Emergency Operations Department and Notify Fire Department.
- 13) Continue monitoring until water quality is back to normal and IH gives approval to lift advisory or notice.
- 14) Complete documentation:
 - a) Record of events, include times and dates.
 - b) Complete a comprehensive damage assessment.
 - c) Investigate potential causes.
 - d) After action report.

SECTION 6: Supply Disruption

6.1. Equipment Failure

Description of Emergency: This type of emergency is typically caused by extreme weather events that place a very high demand on the Water Treatment Plant, or any other situation where water demands are high, and equipment or infrastructure reduces the ability to maintain maximum output.

Indicators: Visual observations by Water Operators. Failure of equipment as identified by SCADA and alarms.

Actions:

- 1) Document Situation: Note date, time, location and means of event recognition.
- 2) Notify Water Operator.
- 3) Notify Manager.
- 4) Notify Communications Department.

103 Mile Water System – 2025 Emergency Response and Contingency Plan

- 5) If cause is identified as a main break, see section 6.2.
- 6) Well Site Investigation: Generally, this problem is caused by high flows and overheating VFD's.
- 7) Check in the pumphouse for mechanical issues such as temperatures on variable frequency drive (VFD) displays.
- 8) Check all SCADA pages and trends to determine what is operational, what has failed, or what is at risk of failure.
- 9) Check on alarms.
- 10) Note status of chlorine disinfection, reservoir level, source pump status, chemical dosing status, and raw water flows.
- 11) Check all necessary equipment to confirm proper functionality.
- 12) Check inventory for parts that may be available to aid in necessary repairs. If necessary, contact 100 Mile Public Works for assistance.
- 13) If the issue stems from the VFD's, allow to cool and contract electrician if necessary.
- 14) If issue is due to drawdown in Supply Well, consult Drought Management Plan (Appendix C) and proceed to next step.
- 15) If problem persists:
 - ✓ Communicate with Interior Health, issue an advisory as recommended (see Section 1).
 - ✓ Implement emergency water restrictions (Communications Department).
 - ✓ Contact 100 Mile Fire Department and CRD Protective Services Department to inform them of the situation.

16) Complete documentation:

- a) Record of events, include times and dates.
- b) Complete a comprehensive damage assessment.
- c) Investigate potential causes.

6.2. Supply Main Break

Description of Emergency: Failure or damage to a water supply main causing loss of water and/or pressure.

Indicators: SCADA alarms indicating pressure loss, calls from residents or staff observations.

Actions: Steps to be taken by CRD staff:

- 1) Contact Manager of Utilities.
- 2) Contact Water Operator.
- 3) Determine location.
- 4) Stop the flow of water by closing valves and isolating the break, depending on the scale of the break (see chart in Appendix B); attempt to maintain positive pressure.
- 5) Contact Manager and describe the emergency.
- 6) Determine what section of the system has been affected by the depressurization.
- 7) If there is a potential that the system has been contaminated, the Manager of Utilities will contact Interior Health for recommendations on issuing a Water Advisory. See Appendix E (follow Communications procedures).
- 8) Make the site safe by implementing traffic control: block road, if necessary, contact traffic control contractor (see Appendix A).
- 9) If possible, mitigate danger to the public and further damage of infrastructure or property. If necessary and feasible, set up sediment control measures and de-chlorinated water released.
- 10) Assess immediate damage.
- 11) Coordinate repair plans with appropriate contractors (see contacts).
- 12) Contact the Provincial Agency responsible (see Appendix) for large discharges of chlorinated water including;
- 13) If there is significant sediment or unchlorinated water in streams.
- 14) Call Fire Department to inform them when hydrants are in or out of service.
- 15) Complete documentation:
 - a) Record of events, include times and dates.
 - b) Complete a comprehensive damage assessment.
 - c) Investigate potential causes.
 - d) After action report.

6.3. Extended Loss of BC Hydro Power Supply

Description of Emergency: The loss of power will stop the pumping systems to supply water to the distribution system and from filling the reservoir. With no power, a full reservoir has approximately 48 hours of water available.

Indicators: SCADA alarms

Actions:

- 1) Source a generator.
- 2) Change system settings if necessary to keep reservoirs topped up.
- 3) If sudden phase loss or total power loss causes equipment failure see Section 6.
- 4) If issues with power supply persist:
 - ✓ Contact BC Hydro for information on the timelines for power restoration.
 - ✓ Communicate with Interior Health, issue an advisory as recommended (see Section 1).
 - ✓ Implement emergency water restrictions (Communications Department).
 - ✓ Potentially throttle down the pressure within the distribution to reduce water loss (always above 20 psi).
 - ✓ Contact 100 Mile Fire Department and CRD Protective Services Department to inform them of the situation.

6.4. Operator Transportation Routes Compromised

6.4.1. Potential Causes

- Forest fire
- Accident
- Mechanical issues with vehicle
- Construction

Description of Emergency: The usual transportation route to the 103 Mile area is blocked (e.g., by a forest fire or accident), and no operator can be onsite to perform duties.

Actions:

- 1) Contact Manager of Utilities.
- 2) Manager will inform Interior Health Officer of situation.
- 3) Continue to monitor system using SCADA.
- 4) If issue persists:
 - ✓ Contact 100 Mile or other Regional Operators for assistance.

- ✓ Reach out to local contact if physical checks are needed. Preferably local contractor with system experience (see Appendix A).
- ✓ Contact the Communications Department to issue applicable advisories (at the recommendation of Interior Health).
- 5) Complete documentation:
 - a) Record of events, include times and dates.
 - b) Complete a comprehensive damage assessment.
 - c) Investigate potential causes.

SECTION 7: Cyber Incident

7.1. Introduction

Cyberspace and its underlying infrastructure are vulnerable to a wide range of hazards from both physical attacks as well as cyberthreats. Sophisticated cyber actors and nation-states exploit vulnerabilities to steal information and money and are developing capabilities to disrupt, destroy or threaten the delivery of essential services such as drinking water and wastewater. As with any critical enterprise or corporation, drinking water and wastewater utilities must evaluate and mitigate their vulnerability to a cyber incident and minimize impacts in the event of a successful attack.

Cyber incidents can compromise the ability of water and wastewater utilities to provide clean and safe water to customers, erode customer confidence and result in financial and legal liabilities. The following sections outline actions drinking water and wastewater utilities can take to prepare for, and respond to, cyber incidents.

Indicators: Can include:

- a) Loss of ability to access or use SCADA system.
- b) Visible signs of SCADA network tampering.

Actions:

- 1) If possible, disconnect compromised computers from the network to isolate breached components and prevent further damage, such as the spreading of malware. Do not turn off or reboot systems this preserves evidence and allows for an assessment to be performed.
- 2) Assess any damage to utility systems and equipment, along with disruptions to utility operations.

- 3) Notify utility personnel, take action to restore operations of mission critical processes (e.g., switch to manual operation if necessary), and public notification (if required).
- 4) Report the cyber incident as required to law enforcement and regulatory agencies.

7.2. IT and/or IT Contractor Steps

- 1) Notify any external entities (e.g., vendors, other government offices) that may have remote connections to the affected network(s).
- 2) Document key information on the incident, including any suspicious calls, emails, or messages before or during the incident, damage to utility systems, and steps taken in response to the incident (including dates and times).
- 3) Review system and network logs and use virus and malware scans to identify affected equipment, systems, accounts and networks.
- 4) Document which user accounts were or are logged on, which programs and processes were or are running, any remote connections to the affected IT systems or network(s) and all open ports and their associated applications. If possible, take a "forensic image" of the affected IT systems to preserve evidence. Tools to take forensic images include Forensic Tool Kit (FTK) and EnCase.
- 5) If possible, identify any malware used in the incident, any remote servers to which data may have been sent during the incident, and the origin of the incident. Canadian Centre for Cyber Security can assist. <u>contact@cyber.gc.ca</u> or <u>1-833-CYBER-88</u>.
- 6) Research and identify if any employee or customer personally identifiable information (PII) was compromised.
- 7) Check the system back-up time stamp to determine if the back-up was compromised during the incident.
- 8) Document all findings and avoid modifying or deleting any data that might be attributable to the incident.

SECTION 8: Drought

8.1 Introduction

Drought is often caused by a long duration of inadequate rainfall or snowmelt to replenish the level of the water source. It can also be the result of a breakdown in a crucial piece of a water system's infrastructure; or a prolonged issue with water quality that prevents the supply of potable water for an extended period. All of these circumstances can result in a significant depletion in the source capacity or even a complete loss of source. The Cariboo Regional District's Drought Management Plan for the 103 Mile Water System serves as a guide to monitoring, managing and conserving water use in the event of an impending drought. The objectives of this Plan are to:

- 1) Identify the priority users of the water supply.
- 2) Provide direction on water conservation before and during the drought period.
- 3) Establish a guideline for communicating issues and instructions to users and other key contacts.
- 4) List supplemental or alternate sources of potable water in the event of a prolonged drought.

Appendix C outlines the Cariboo Regional District's Drought Management Plan.

Appendix A: Contacts

Title	Contact	Work #	Cell #
Manager of Utilities	Kelly McDonald	(250) 305-2179	(250) 855-8340
Manager of Communications	Gerald Pinchbeck	(250) 392-3351 Ext. 213	(250) 305-7576
Manager of Emergency Programs	Irene Israel	(250) 392-3351	
Manager of Emergency Programs		Ext. 274	
Chief Administrative Officer	Murroy Doly	(250) 392-3351	
Chief Administrative Officer	Murray Daly	Ext. 214	
Managar of Fire Administration	Cody Proston	(250) 392-3351	
Manager of Fire Administration	Cody Braaten	Ext. 265	
Regional Fire Chief	Roger Hollander	(250) 392-3351	
Regional File Chief	Roger Honaldel	Ext. 204	
Environmental Services Assistant	Cheryl McMullen	(250) 392-3351	
Environmental services Assistant		Ext. 250	

Cariboo Regional District Administrative Staff Emergency Contact Numbers

Cariboo Regional District Water Operators

Region	Operator	Work #	Cell #
South (100 Mile)	Jourdy Ouellette		(250) 945-5661
South (100 Mile) Larry Perry			(250) 945-4756
South (100 Mile)	Colin Brusic	1-800-665-3456	(250) 945-4312
Central (WL)	Ken Heidema	(press 5 when	(250) 855-4097
Central (WL)	Chuck Howes	prompted)	(250) 855-8563
North (Quesnel)	Tyler Olsen	Tyler Olsen	
North (Quesnel)	Phil Wilkins		(250) 255-0910

Provincial and Federal Contacts

Organization	Contact	Work #	Emergency #
Interior Health	Diana Tesic-Nagalingam	(250) 851-7340	(250) 320 0501
	Environmental Health		
	Officer		
Interior Health	MHO (after hours on-call)		1-866-457-5648
100 Mile RCMP	Office	(250) 395-2456	911
100 Mile VFD	Chief	(250) 395-2152	911
BC Environmental Emergency Branch	(Report a Spill)	(250) 398 4530	1-800-663-3456
BC Hydro (Electrical)	Office	1-888-769-3766	1-800-224-9376
Canadian Centre for Cyber Security		1-833-CYBER-88	
FortisBC (Gas)	Office	1-888-224-2710	1-800-663-9911

Contractors

Company	Contact	Work #	Cell #
Electrical and Instrumentation:			
Garth's Electric	Terry Wiebe	(250) 395-2545	(250) 395-6521
Excavating:			
Carwen Dirtworks	Edward Dalziel	(250) 395-8882	(250) 808-3002
AK Burfoot Excavating & Plumbing	Arlyn Burfoot	(250) 706-9205	
Instrumentation and SCADA:			
Exceed Electrical Engineering	Adam Cook	(250) 434-9489	(250) 267-2895
Laboratory:			
ALS Environmental	Caitlin Fountain	(250) 372-3588	(250) 572-1458
Plumbing:			
Burgess Plumbing & Heating	Office	(250) 392-3301	(250) 395-4800
Well Pump Installation:			
AK Burfoot Excavating & Plumbing	Arlyn Burfoot	(250) 706-9205	
Big Country Pumps	Rob	(250) 296-3521	
Hillside Pumps		(250) 392-7876	
Northlands Water & Sewer	Dan Gauthier	(250) 561-1884	
Precision Service and Pumps		(604) 850-7010	

Municipalities

Municipality	Contact	Work #	Cell #
100 Mile House	100 Mile House Public	(250) 395-2434	
	Works		
100 Mile House	Todd Conway (Director)	(250) 395-2434	
Williams Lake	Patrick Mahood	(250) 392-2311	(250) 392-0867
	(Manager of Public Works)		
Williams Lake	Matt Sutherland	(250) 392-2311	(250) 392-0864

Media (Communications Department Leads)

Name	Туре	Contact	Work #
CFFM The Goat	Radio/Digital		(250) 392-6551
CBC Kamloops	Radio/Digital		(250) 374-6802
100 Mile Free Press	Newspaper/Digital		(250) 395-2219
Global News	Television		(778) 945-9399

Appendix B: Charts

Water Main Break

	Water Main Break Severity Chart					
Class 1	Class 2	Class 3	Class 4	Class 5		
Routine	Minor	Substantial	Major	Catastrophic		
Small enough to leave until repairs are convenient	Water Pooling	Isolation Needed Large area needs to be isolated		Complete Distribution System Shut down		
Positive Pressure Maintained	Positive Pressure Maintained	Positive Pressure may not be possible	Loss of Pressure in large area of distribution system	Complete system pressure loss (e.g. drained reservoir)		
Consult with DWO if any concerns.	required, consult with		Advisory needed, contact interior health. Assess damage	Advisory needed, contact interior Health. initiate EOC.		
Flush line (localized)	sample for bacteriological contamination after flushing lines as per C651-14 (localized)	Sample for bacteriological contamination after flushing lines as per AWWA C651-14	Chemical and bacteriological sampling may be needed. Possible unidirectional flushing and super chlorination needed as per AWWA C651- 14	Chemical and bacteriological sampling needed at various points in the system. System wide flushing needed. Super chlorination required as per AWWA C651-14		

Critical Parts Inventory

	Critical Parts Inventory						
Part	Use	Location Stored	Vendor	Part	Use	Location Stored	Vendor

-				
-				

Appendix C: Drought Management Plan

DROUGHT MANAGEMENT PLAN

Priority Users

The area served by the 103 Mile Water System is comprised of an estimated 158 residents. In a drought situation, the provision of water will be prioritized as follows:

Priority Level	User	Comments
1	Residents	The CRD is obligated to provide water to the residents
		served by the 103 Mile Water System for basic health and
		sanitation needs.

Water Restrictions and Conservation Measures

The following restrictions will be imposed and conservation measures recommended to 103 Mile Water System users at various stages prior to and during a drought:

STAGE 1: PREPAREDNESS	
Permitted Uses	Restrictions
Drinking water	May 1 to Oct. 1: Lawn watering on reduced days for
Bathing	reduced hours, per bylaws.
Handwashing dishes or using dishwasher	Conservation Measures
Washing machine	Install water-saving devices.
Watering plants with a hose or watering can	
Bathing pets.	
Washing vehicles.	
STAGE 2: IMPENDING DROUGHT – CONSERVATION	
Permitted Uses	Restrictions
Drinking water	Lawn watering days and hours restricted further.
Bathing	Wash vehicles only if absolutely necessary.
Handwashing dishes or using dishwasher	Conservation Measures
Washing machine	Bathe pets only as needed.
Watering plants with a hose or watering can	Use washing machine for full loads only.
	Use dishwasher for full loads only.
STAGE 3: DROUGHT – RESTRICTIONS	
Permitted Uses	Restrictions
Drinking water (all users)	No watering of lawns or watering of plants, per bylaws.
Bathing	No bathing of pets unless absolutely necessary.
Handwashing dishes or using dishwasher	No washing of vehicles.
Washing machine	No filling of swimming pools.
	No power-washing.
	Conservation Measures
	Bathe only as needed and/or reduce time in shower.
	Use washing machine for full loads only.
	Use dishwasher for full loads only.

Communication Plan

Communication between the CRD and users of the 103 Mile Water System, as well as with key operational contacts, is imperative during an emergency situation. Providing timely and clear

information and instructions greatly reduces confusion, frustration and anxiety, and enables outside agencies to provide assistance more effectively if needed.

STAG	E 1: PREPAREDNESS						
Wate	r use is routinely higher from mid-Spring to the	e end of Summer eac	ch year due to less rainfall, increased				
	lawn and garden maintenance, swimming pools, more frequent car-washing and showers, etc.						
Water levels are constantly monitored, and watering restrictions are put in place annually from May 1 to							
October 1 as a preventative measure to minimize depletion of the water supply during these months.							
Proce	edures (Concurrent)	Target					
Finan	ce Dept. mails notice of water restrictions	Residents					
and v	vater conservation recommendations with						
annu	al utility bills in April of each year.						
	nunications Dept. posts notice of water	All users of the 103	3 Mile Water System				
restri	ctions and water conservation						
recon	nmendations on website and social media.						
	nunications Dept. sends notice of water	Subscribed users.					
	ctions and water conservation						
	nmendations by email.						
	r Operators post notice of water restrictions		lile Water System who don't have access				
	vater conservation recommendations on	to a computer.					
	tin boards at 108 Mall, gas station, mailboxes						
	E 2: POTENTIAL THREAT – DIMINISHED WATE						
	re is little snowmelt in the Spring and rainfall ir						
	ater supply to an adequate level, further restri						
	nged water quality issues may result in having						
	ignificant or ongoing issues would indicate that	t action is required to	o prevent the possibility of a water				
	y crisis.						
	edures		Target				
1.	Inform key contacts of possible threat to wate	er source:	Manager of Utilities				
	Water Operators notify Manager of Utilities		Drinking Water Officer				
	Manager of Utilities informs other key contac	ts	Electoral Area Director				
			Manager of Fire Administration				
2.	At Interior Health's direction, Manager of Util		All users of the 103 Mile Water System				
	Communications Dept. have public notice ma						
	posted on website, social media, and on local						
	Communications Dept. sends public notice by		Subscribed users				
3.	Manager of Utilities notifies CRD Managers in		Chief Administrative Officer				
	Emergency Planning as a precautionary meas	ure.	Manager of Communications				
L			Manager of Emergency Programs				
4.	Manager of Utilities, Water Operators and Ele	All users of the 103 Mile Water System					
	Director hold public meeting to discuss potential drought,						
	further restrictions required and recommended conservation						
	measures.						
5.	Manager of Utilities notifies other agencies a		District of 100 Mile				
	measure that assistance may be required if si	tuation can't be	Ministry of Water, Land and Resource				
	rectified.		Stewardship				
			Ministry of Emergency Management				
			and Climate Readiness				

STAG	E 3: EMERGENCY – SIGNIFICANT DEPLETION (DR LACK OF SOURCE
The f	following situations are considered critical:	
• /	An inability to keep the water supply at a level t sanitation needs of the users.	hat will provide enough water to meet the basic health and ructure that results in the inability to provide water to the
	Isers.	fuctore that results in the mability to provide water to the
• /	A severe or prolonged water quality issue that c	annot be easily rectified.
• -	The inability to provide an adequate water supp	bly for fire protection.
• /	An ongoing water supply issue that results in sig	nificant losses for businesses in the service area.
Proc	edures	Target
1. 2.	Inform key contacts of crisis situation. Discuss further steps: Water Operators inform Manager of Utilities. Manager of Utilities notifies other key contacts. At Interior Health's direction, Manager of Utilities and Communications Dept. have public notice mailed to users, and posted on website, social media, and local bulletin boards.	Manager of Utilities Drinking Water Officer Electoral Area Director Chief Administrative Officer Manager of Fire Administration Manager of Communications Manager of Emergency Programs All users of the 103 Mile Water System
	Communications Dept. sends notice of emergency situation by email and via Voyent Alert.	Subscribed users
3.	Manager of Utilities and Communications Dept. post notice in local newspaper; make radio announcements.	All users of the 103 Mile Water System
4.	Manager of Utilities, Water Operators and Electoral Area Director hold public meeting to discuss further steps.	All users of the 103 Mile Water System
5.	Manager of Utilities notifies other agencies. Discuss what assistance may be available.	District of 100 Mile Ministry of Water, Land and Resource Stewardship Ministry of Emergency Management and Climate Readiness

Supplemental or Alternate Sources of Potable Water

Supplemental or Alternate Source	Contact Information	Capacity Available	Estimated Time To Deliver	Estimated Cost
Backup Water Source				
Reservoir Rental Company				
Bulk Haul Water	District of 100 Mile 250-395-2434 Bulk Water Station is just off Exeter Truck Route near Co-Op Cardlock	Not specified	Pick up only	\$100 upon opening a/c, plus \$0.15 per litre.
	Triple P Sanitation (upon verification of IH permit)	Not specified		

Other Water Supplier	Triple P Sanitation (upon verification of IH permit)	Not specified		
Bottled Water	Cariboo Water Purification Centre	Not specified		
	Cool Clear Water	Not specified	Tuesdays	\$6.50 / 5 Gal \$4.00 / 3 Gal
	Williams Lake Water Factory	Not specified		

Operational Procedures

Actio	n	Person Responsible
1	Ensure pump is shut off (to protect pump).	Water Operator
2	Notify all users by social media, email distribution, radio and public bulletins.	Manager of Utilities
	High risk users to be notified by telephone call. Situationally assessed for	Manager of
	best means of communication process.	Communications
3	Contact government agencies (see below) for advice and assistance.	Manager of Utilities
4	Arrange alternate source (e.g. bottled water, bulk hauler and storage tank).	Manager of Utilities
Gove	rnment Agency Contacts:	
•	Drinking Water Officer	
•	Local government's Emergency Program Coordinator	
•	Ministry of Forests, Lands and Natural Resource Operations	
•	Others as necessary, depending on severity (ie. Fire Department)	

Appendix D: Templates

Damage Assessment Summary (EOC 415)

	Event:	Time:		Date:
	Operational Period:	PEP Task #:		Position:
		Number	Estimated Value	Comments
	 Municipal Facilities Damaged 			
	 Municipal Facilities Destroyed 			
	 Public Facilities Damaged 			
	 Public Facilities Destroyed 			
>	 Provincial Facilities Damaged 			
pert	 Provincial Facilities Destroyed 			
Public Property	 Federal Facilities Damaged 			
olic	 Federal Facilities Destroyed 			
Put	 Roads Damaged 			
	 Roads Destroyed 			
	 Bridges Damaged 			
	 Bridges Destroyed 			
	 Railroads Damaged 			
	 Railroads Destroyed 			
	 Water Supply Damaged 			
	 Sewers Damaged 			
	Total Public Damage:			
	 Residential Buildings Damaged 			
₽	 Residential Buildings Destroyed 			
opei	 Businesses Damaged 			
Pre	 Businesses Destroyed 			
Private Property	 Agriculture Damaged 			
P	 Agriculture Destroyed 			
	Total Public Damage:			
Prio	rity Repairs/Restoration:			
Prei	pared By:		Date and Ti	me:

Action Plan (EOC 502)

	EOC Ac	TION PLAN		
Event:		Date:		Time:
Operational Period:	PEP Task #:	Prepared By:	1	
Objectives: (In priority order, for	the designated ope	erational period)		
Tasks/Action Items:			Functio Assign	e e in protion
Attachments: (Check if attached	1)			
Organization Chart		formation Plan	Com	munication Plan
EOC Floor Plan		tation Plan		
Situation Map	Evacuatio			
Recommended By (Planning Section	on Chief): A	pproved By (EOC Dire	ector):	
Liaison Off	gement Officer icer	Planning S Logistics S Finance/A	Section Chie Section Chief Section Chief dministration	

Situation Report (EOC 501)

EOC SITUATION REPORT				
Date and Time:	ocal Authority: 			
	Community / Local Authority PREOC Operational Area Coordinator (Name and Position)			
Position: Phone #: Fax #:	Report Type: Initial Update # Final Situation Forecast: Improving Unchanged Deteriorating			

Highlights (*Situational Overview – Key Points*):

Current Priority Needs: (Resources / Information / Support):

Resource Request Attached:	Yes	□ No

People Impacted (Estimated / Confirmed):

#	#	#	#	#	#
Evacuated	Injured	Homeless*	Missing	Dead	Hospitalized

* As a result of the emergency event

Event	Log (EOC	414)								
				Closed							
	ä			Follow-Up							
	Position:	Date:									
				Action							
POSITION LOG	Section:	PEP Task #:	DOG								
Po				From							
		eriod:		То							
	Event:	Operational Period:		Time (24 Hr.)							

Event Log (EOC 414)

Appendix E: Communications Templates

The Cariboo Regional District has issued a Boil Water Notice to users of the **{SYSTEM NAME}** Water System, pursuant to a request of a Drinking Water Officer under Section 14 of the *Drinking Water Protection Act*. This Notice remains in effect until further notice.

The Cariboo Regional District's water systems are tested regularly to ensure they meet public health regulations. This boil water notice is being issued because {REASON}. This notice is being issued {CHOOSE: as a precautionary measure to protect public health. OR in order to protect public health and safety from significant health risks presented by pathogens in the water supply.}

All users of the {WATER SYSTEM NAME} Water System are asked to bring water to a rolling boil for a minimum of one minute before using water from the system for:

Drinking (or use an alternate, safe source of water) Cooking (if not boiled) Brushing teeth Washing Dishes Washing fruits or vegetables to be eaten raw Watering animals

Also, please use hand sanitizer after washing hands.

If you have further questions, please call Environmental Services at 1-800-665-1636 during regular office hours.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord.ca/water-notices-and-advisories</u>. To receive updates on CRD water systems and other relevant information within the CRD, residents are reminded to subscribe to the latest news on our website at <u>cariboord.ca/subscribe</u>, Residents can also sign up the Cariboo Chilcotin Emergency Notification System to be notified directly of emergency orders and alerts or utility service interruptions at <u>cariboord.ca/EmergencyNotifications</u>.

🕒 @CaribooRD

cariboord.ca

facebook.com/caribooregion facebook.com/CRDEmergencyOperations

The Cariboo Regional District has issued a Do Not Use Notice to users of the **{SYSTEM NAME}** Water System, pursuant to a request of a Drinking Water Officer under Section 14 of the *Drinking Water Protection Act*. This Notice remains in effect until further notice.

The Cariboo Regional District's water systems are tested regularly to ensure they meet public health regulations. Due to the presence of {if known, be specific, or if unknown say "contaminants in the water supply posing an immediate threat to resident's safety}, the Cariboo Regional District is implementing this until further notice. Follow all instructions below:

All users of the {WATER SYSTEM NAME} Water System are asked to immediately stop using water from the system for any purpose. This includes: drinking, making beverages or ice, brushing teeth, preparing or washing food, bathing, water for animals, washing anything (including vehicles), and watering plants.

Do not turn your taps on for any reason. Boiling water will NOT make it safe! Water from your hot water tank may also be unsafe, and you are advised to consult a gualified plumber before draining the tank.

The Cariboo Regional District has contacted Interior Health and the Ministry of Environment to request their cooperation in investigating this matter. In addition, the Cariboo Regional District is taking immediate acton to find another source of water supply for residents of {WATER SYSTEM NAME}.

During this time, an alternate water source will be available at {ADDRESS AND OPERATING HOURS}.

If you have further questions, please call Environmental Services at 1-800-665-1636 during regular office hours.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit cariboord.ca/water-notices-and-advisories. To receive updates on CRD water systems and other relevant information within the CRD, residents are reminded to subscribe to the latest news on our website at <u>cariboord.ca/subscribe</u>. Residents can also sign up the Cariboo Chilcotin Emergency Notification System to be notified directly of emergency orders and alerts or utility service interruptions at <u>cariboord.ca/EmergencyNotifications</u>.

🕒 @CaribooRD

cariboord.ca

facebook.com/caribooregion facebook.com/CRDEmergencyOperations

The Cariboo Regional District has issued a water quality advisory, to the {SYSTEM NAME} Water System users because of {issue} levels exceeding the *Guidelines for Canadian Drinking Water Quality*. This Advisory remains in effect until further notice.

The Cariboo Regional District's water systems are tested regularly to ensure they meet public health regulations. Health Canada's Guidelines for Drinking Water has established a maximum acceptable concentration (MAC) for {issue} in drinking water of {standard}. Recent water samples submitted show {issue} concentrations that exceed the MAC.

ction requires a	pproval from a D	rinking Water Off	hcer.	

{Other safety instructions or advisories. I.e. is the water safe for other non-consumption purposes, how does boiling water impact it, etc.}


If you have further questions, please call the Environmental Services department at 1-800-665-1636 during regular office hours.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord.ca/water-notices-and-advisories</u>. To receive updates on CRD water systems and other relevant

E @CaribooRD

cariboord.ca

facebook.com/caribooregion facebook.com/CRDEmergencyOperations

The Cariboo Regional District has issued a water quality advisory, to the {SYSTEM NAME} Water System users because of manganese (Mn) levels exceeding the *Guidelines for Canadian Drinking Water Quality*. This Advisory remains in effect until further notice.

The Cariboo Regional District's water systems are tested regularly to ensure they meet public health regulations. Health Canada has established a maximum acceptable concentration (MAC) for manganese in drinking water of 0.12 mg/L. Recent water samples submitted show manganese concentrations that exceed the MAC.

Manganese (Mn) is an element found in air, food, soil and drinking water. While a small amount of Mn is essential for human health, new Health Canada research has shown drinking water with too much Mn can be a risk to health for infants and young children.

Infants and young children are the most sensitive and vulnerable population, as their bodies absorb more manganese and cannot regulate or remove the chemical as readily as adults and older children. As a result, the drinking water from this system must not be used to prepare formula for bottle-fed infants. An alternate source of safe drinking water, such as bottled water, must be used when preparing formula for infants and young children. Boiling the water will <u>not</u> lower the manganese level.

Breastfed infants are generally considered at lower risk to manganese exposure as the transfer of manganese to breast milk is limited. Pregnant or breastfeeding women who have concerns may wish to use a safe, alternate source of drinking water or consult with a healthcare professional.

Water exceeding the MAC for manganese can be used for cooking and drinking by non-vulnerable groups and is still considered safe for hand washing, bathing and showering. If you have further questions, please call the Environmental Services department at 1-800-665-1636 during regular office hours.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord.ca/water-notices-and-advisories</u>. To receive updates on CRD water systems and other relevant information within the CRD, residents are reminded to subscribe to the latest news on our website at <u>cariboord.ca/subscribe</u>.

🕒 @CaribooRD

cariboord.ca

facebook.com/caribooregion facebook.com/CRDEmergencyOperations

The Cariboo Regional District has issued a water quality advisory for users of the Forest Grove Water System because of a positive test result for <u>low</u> coliform found in the system.

For this reason, as precautionary measure, any high-risk users, including those with weakened immune systems, young children and those on dialysis are advised to:

- use purchased bottled water or boiled water for drinking, brushing teeth, dishwashing, preparing food, and making ice, or
- bring water to a roiling boil for one minute, then cool to an appropriate temperature before using.

The CRD regularly tests the water system as part of its Water Quality Monitoring Program. The advisory will remain in effect until further notice. We apologize in advance for any inconvenience this may cause.

When satisfactory results are reported from the required testing, customers will be notified that the advisory has been lifted. If you have questions, please call the Environmental Services department at 1-800-665-1636. If calling outside of regular business hours (8:30 a.m. to 4:30 p.m. Monday to Friday), please dial "5" when prompted to reach our emergency after hours contact.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord.ca/water-notices-and-advisories</u>.

To receive updates on CRD water systems and other relevant information within the CRD, residents are reminded to subscribe to the latest news on our website at <u>cariboord.ca/subscribe</u>.

匡 @CaribooRD

cariboord.ca

facebook.com/caribooregion facebook.com/CRDEmergencyOperations